
Nt 9- 10085

A Lisp-Ada Connection

Allan Jaworski, David Lavallee, David Zoch

Ford Aerospace & Communications Corporation

College Park, MD 20740

z /

/

/

OVERVIEW

The Ford Lisp-Ada Connection (FLAC) is an expert system

generation tool designed to support direct entry of

knowledge by experts in a Lisp machine environment and

downloading to an inference engine which has been

implemented in the Ada programming language. FLAC consists
of two subsystems, the Knowledge Editor Graphics System

(KEGS) and the Ford Ada Inference Engine (FAIE).

Knowledge is entered through KEGS, an easily learned

knowledge base CAD system which provides integrated features

for rule development and knowledge base testing. An expert

can use a set of menu- and mouse- driven resources to

develop a knowledge base which is graphically represented.

Tools are provided for the expert to rapidly enter, test,

and debug knowledge base logic paths. The user interface is

similar to those found in CAD systems for electrical circuit

design.

The knowledge base can then be downloaded to FAIE, an

extremely fast portable Ada-based inference engine which is

capable of firing up to 700 rules per second on an MC68000

or 1500 rules per second on a VAX 11/780. The inference

engine is written in the Ada programming language and

supports both forward and backward chaining modes of

inference. The FAIE run-time environment has been

previously used in a prototype of the Space Station

Operations Management System.

FLAC currently runs on a Symbolics 3640 and a VAX 11/780 VMS

processor connected via DECnet/Ethernet. KEGS has been

implemented in Symbolics ZetaLisp and FAIE was originally

implemented in Telesoft Ada on an Intellimac MC68000-based

system and then ported to DEC VAX/VMS Ada.

EXPERT SYSTEMS INTHE SP___ACE STATION INFORMATION SYSTEM

Future space information systems must be automated to the

fullest extent possible both to support crew and operations

staff efficiency and to allow us to maintain spacecraft and

instrument safety in the face of increasingly complex

systems and operational requirements. The Space Station
Information System is a prime example of these enhanced

requirements. One of the key engineering guidelines for the

r



Page 2

Space Station is that it should be able to carry out normal

operations for some finite period of time without contact

with the ground. As pointed out in a NASA Technical

Memorandum on Automation Technology For The Space Station,

"Expert systems are needed to perform many

monitoring and control functions requiring

complex status analysis and automated

decision making so that the Station is less

dependent on ground support in these
areas.,,

Also in the same document:

"In emergency situations, automated systems

which respond very rapidly to a crisis can

bring the system to a fail-safe condition

before extensive damage occurs... Without

automation, humans may be placed more often

in pressure-prone situations such as EVA

and emergency maintenance in which there is
an increased chance of error."

Expert systems could incorporate fault diagnosis, isolation,
and recovery to enhance crew safety. Alarms could be

triggered automatically to warn crew members of hazardous

situations. In addition, many faults could be corrected

before they pose any danger to the crew or spacecraft.

Lis2 versus Ada

Ada has been baselined as the programming language for the

configuration-managed software associated with the SSIS. A

lively debate in the software community has centered on the

respective strengths of Lisp and Ada as languages for the

implementation of expert systems. Lisp is generally

regarded as a "hacker's,, language. Lisp and its development
environments support highly interactive modes of software

implementation where requirements specification, design,

implementation, and testing are mixed in a process typically

characterized as "prototyping,,. Ada stems from a heritage

of disciplined development and configuration management

practices of the sort usually practiced by both NASA and the

Department of Defense. Neither mode is a totally

satisfactory approach to the development of quality products

which fully meet user needs. We cannot tolerate

undisciplined development of mission critical systems, yet

many of our systems are developed with an inflexible

approach that does not fully meet user requirements.

At a more fundamental level Lisp and Ada differ as

programming languages. Lisp is a weakly typed language with

characteristics that even obscure the distinction between

data and programs (both are trees of Lisp atoms). Ada on



Page 3

the other hand requires compile-time checking of type
compatibility and does not allow the passing of procedures
as arguments. Lisp is commonly used as an interpreted
language while the design of Ada (particularly the large
volume of compile-time checking) strongly restricts it to
compiled implementations.

Lisp and Ada do share certain common characteristics.
object-oriented design is a common theme and some of the
best implementation work done in both languages uses
object-oriented methodologies. Both languages support
structures which facilitate the direct implementation of
object oriented design. The Rational Ada development
environment borrows many Lisp machine concepts to radically
improve productivity of Ada programmers. The Common Lisp

notion of a package provides Lisp programmers with modular

capabilities similar to those found in the Ada language.

An Integrated Approach

Broadly speaking, Lisp environments are ideal for the

prototyping and development of user interfaces. Ada
environments are ideal for the development of large software

systems with critical reliability and maintenance

requirements. An approach currently being evolved at Ford

Aerospace is the integrated use of both languages in a

networked environment. Lisp is used to construct an

extremely friendly knowledge editor which supports the

development and testing of knowledge bases which are
downloaded to an Ada inference engine that operates in

real-time fully independently of the knowledge editor. This

paper describes the features of the Ford Lisp-Ada Connection

(FLAC), a prototype which combines both systems into a
coherent real-time expert systems development environment.

THE FLAC ENVIRONMENT

Figure 1 shows the overall structure of FLAC. In its

current implementation an expert uses a mouse-menu interface

to enter knowledge through a graphics-oriented editor. He

can exercise test cases and directly observe the behavior of

the knowledge base which is graphically represented. He can

trigger downloading of knowledge bases to a remote computer

system and directly observe the execution of applications

programs which use the real-time inference engine through
remote terminal services. Windowing services on the Offline

system allow simultaneous knowledge entry, debugging, and
observation of remote applications. The current

implementation environment of FLAC is a a Symbolics Lisp

machine (Offline System) linked by DECnet/Ethernet to a VAX

11/780 (Online System). We describe the two major

components of FLAC, the Ford Ada Inference Engine (FAIE) and

the Knowledge Editor Graphics System (KEGS).



OFFLINE SYSTEM

EXPERT

KNOWLEDGE

EDITOR

GRAPHICS

SYSTEM

(KEGS)

,

KNOWLEDGE BASEACCESSES

TESTCASEGENERATION

/,

OFFtlNE

KNOWLEDGE

BASES

TEST DATA

BASES

ml_

ONLINE SYSTEM

NETWORK

TERMINAL

SERVICES

APPLICATIONS

FORD ADA

INFERENCE

ENGINE

(FAIE)

NE TWORK

FILE

TRANSFER

ONLINE

KNOWLEDGE

BASES

Figure I. Ford Lisp - Ada Connection (FLAC)



Page 5

The Ada Inference Engine

The Ford Ada Inference Engine (FAIE) is a prototype expert

system inference engine designed to execute as an Ada task
embedded in an expert system which could in turn be embedded

in a larger program. The sample application discussed here

involves using FAIE for fault diagnosis. A typical rule in

this type of system might be:

"IF temperature is above normal and

heater output is above normal,

THEN power off heater."

The knowledge base is structured as a directed acyclic

graph. This can be thought of as a network of nodes with

the links all pointing in the same direction. For the

diagnostic system, the leaf nodes on one side of the graph

represent the various sensor data measurements. Commands
for corrective action are the goal nodes on the other side

of the graph. The relationships between erroneous

measurements are the intermediate nodes leading to a goal.

Figure 2 shows a portion of a sample graph. Note: the

dotted lines represent additional portions of the graph that

are not shown.

The leaf nodes represent initial data points that must be

provided to the inference engine. The nodes on the other
side of the graph represent goal states that are sought when

executing the inference engine. The nodes in between

represent hypotheses or subgoals that will be tested. The
links between the nodes are the "production rules" that the

inference engine uses to traverse the graph.

Since we have a compiled, static knowledge base, all

elements are present in the graph. Each node has a status

which we will refer to as "flagged", "unflagged", or

unknown. A "flagged" node is one that satisfies its

associated IF-THEN rule. We must distinguish between an

untested node (status equals unknown), and a node that was

tested and does not satisfy the associated IF-THEN rule

(status equals ,,unflagged"). A "flagged" node is one that
will be used to traverse the graph. The path to a goal must

be continuous through "flagged" nodes. An "unflagged" node

represents a "dead end".

Status for all the leaf nodes is passed to the inference

engine when a problem exists. Figure 3 shows the sample

knowledge base with all the leaves (nodes i-ii) given an

initial status. Nodes 2,3,10 and ii are "flagged".

In an attempt to find a goal as quickly as possible, the

successors of the first "flagged" leaf node are examined and

the first one in the list is visited using Ada procedure

FORWARD CHAIN. Since the status of the successor node is

initialized to unknown, its predecessors are examined along



ELECTRICAL _

CONSUMPTION AREA A TEMPERATURE B

STABILIZATION HIGH HIGH

HIGH 12 17
-lloeole

eleeo _ le

ELECTRICAL

CONSUMPTION

ENVIRONMENTAL
_SUPPORT HIGH

TOTAL
ELECTRICAL

CONSUMPTION

HIGH

ELECTRICAL

CONSUMPTION

PAYLOAD 1
IflGH

ELECTRICAL

CONSUMPTION

PAYLOAD 2

HIGH

ELECTRICAL
CONSUMPTION

PAYLOAD 3

HIGH

13

AREA C
HIGH

15

HEATER B

OUTPUT HIGH

SAMPLE RULE

TEMPERATURE B a HIGH

AND HEATER B OUTPUT m HIGH

then
HEATER B POWER - . OFF;

end if ;

10

20

21 _ POWER
I OFF

_! HEATER

AND - GATE

KEY TO NODES

O LEAF

©
D OR- GATE

_..J GOAL

Figure 2. Sample Compiled Knowledge Base



ELECTRICAL

CONSUMPTION

STABILIZATION
HIGH

ELECTRICAL

CONSUMPTION

ENVIRONMENTAL

SUPPORT HIGH

TOTAL

ELECTRICAL

CONSUMPTION
HIGH

ELECTRICAL

CONSUMPTION

PAYLOAD 1

HIGH

ELECTRICAL

CONSUMPTION

PAYLOAD 2

HIGH

ELECTRICAL

CONSUMPTION

PAYLOAD 3

HIGH

AREA B

TEMPERATURE B

HIGH

HEATER B

OUTPUT HIGH

10

20

POWER
OFF

HEATER
B

KEY TO NODES

O LEAF

D AND - GATE

OR - GATE

"-_ GOAL

KEY TO .STATUS

Q FLAGGED

Q UNFLAGGED

Q UNKNOWN

Figure 3. Knowledge Base - Initial Problem State



Page 8

with its AND/OR flag to determine its status. If the status
of this first successor to the first leaf node is found to
be "flagged", then its first successor in its list is
visited, and so on until a goal is found or a dead end is
reached. If the status of this first successor is found to
be "unflagged", then the next successor in the first leaf
node's list is visited.

If the status of a predecessor node is unknown, then Ada
function BACK TRACK is invoked to return the status. Both
subprograms FORWARD_CHAINand BACK_TRACKare recursive.

Figure 4 shows the resulting
inference engine. To get to
following steps were taken:

status after running the
Figure 4 from Figure 3 the

i. Node 2's successor list is examined, and node 13 is
passed in a call to FORWARDCHAIN.

2. Since node 13 is an "and gate i' and both its predecessors

(2 and 3) are "flagged", node 13 becomes "flagged".
3. Node 13's successor list is examined, and node 17 is

passed in a recursive call to FORWARD CHAIN.

4. Since node 17 is an "and gate" and node 7 is "unflagged,,
node 17 becomes "unflagged,,.

5. FORWARD_CHAIN returns to visiting node 13, where the

successor list is examined, and node 18 is passed
in another recursive call to FORWARD CHAIN.

6. Since node 18 is an "and gate" and both--its predecessors

(8 and 13) are "flagged", node 18 becomes "flagged".

7. Node 18's successor list is examined, and node 21 is

passed in another recursive call to FORWARD CHAIN.

8. Since the status of node 20 is unknown, node 20 is
passed in a call to BACK TRACK.

9. Since node 20 is an "and gate" and both its predecessors

(i0 and ii) are "flagged", node 20 is "flagged"
and BACK TRACK returns.

i0. Since node--21 is an "and gate" and both its predecessors

(18 and 20) are "flagged", node 21 is "flagged"
and a goal has been found.

ii. The recursive calls return and visit other successor

nodes for additional goals.

In practice FAIE is capable of exceedingly fast performance.

As implemented on a nonvalidated version of the Telesoft Ada

compiler FAIE supported a rule firing rate of 700 rules per

second on a Motorola MC68000 processor. On its current VAX

11/780 implementation rule-firing occurs at the rate of 1500

rules per second. For small expert systems this rate is

more than adequate to achieve real-time performance.

Moreover, the maximum search time for a goal can easily be

computed from the characteristics of the knowledge tree.

Future versions of FAIE which take advantage of

multiprocessing implementations of Ada run-time systems will
be even more powerful.



ELECTRICAL

CONSUMPTION

STABILIZATION

HIGH

ELECTRICAL

CONSUMPTION

ENVIRONMENTAL

SUPPORT HIGH

TOTAL

ELECTRICAL

CONSUMPTION

HIGH

ELECTRICAL

CONSUMPTION

PAYLOAD 1

HIGH

ELECTRICAL

CONSUMPTION

PAYLOAD 2

HIGH

ELECTRICAL

CONSUMPTION

PAYLOAD 3

HIGH

13

TEMPERATURE B 10

HIGH

20
17
a ue oee ao

HEATER B

OUTPUT HIGH

LEAF

AND - GATE

O
D
D OR- GATE

r_ GOAL

POWER
OFF

HEATER
B

KEY TO STATUS

FLAGGED

UNFLAGGED

UNKNOWN

Figure 4, Knowledge Base - Problem Solution



Page i0

The Knowledge Editor

The Knowledge Editor Graphics System (KEGS) is a simple

CAD-oriented system for the direct entry of knowledge by

experts. Knowledge entry is accomplished by using a mouse

to draw logic gates, leaves, and goals. Figure 5 is a

sample screen from a KEGS session. It can be seen that the

screen representation of the knowledge base is nearly

identical to the internal representation of the knowledge

base. This greatly simplifies design and eliminates need

for time-consuming conversions of knowledge base formats.

Moreover, since the representation is identical to that used

in electrical circuit design it is nonintimidating to a

large class of experts, the hardware engineers who design
spacecraft systems.

Operation of KEGS is intuitive. The expert simply touches

the cursor to the symbol to be drawn and places as many as
required on appropriate screen locations. Connections are

drawn by touching the line icon and then touching pairs of
symbols in sequence. To delete an icon or connection the

expert touches the cursor to the circle with the diagonal

line through it and then touches the symbol to be deleted.

Connections to that symbol are then automatically deleted.

Ada functions to test leaf conditions or execute goal
conditions are attached through a simple fill-in-the-blanks

menu. These functions can be either user-written functions

or selected from a library of system-provided functions

(e.g. test a variable for range, send a command). Current

capabilities to test the data base are limited to manually
marking the leaf nodes and observing goal firing. Future

plans call for inclusion of automatic test and tracing

functions. Once the data base is complete and tested, the

expert system knowledge base can be downloaded through the
network to be executed by the runtime environment.

RESEARCH DIRECTIONS

The primary focus of our work is the use of multitasking to

improve performance. This will also solve the problem of

reading dynamic data which is constantly being updated as

inferencing is in progress. It seems reasonable to use Ada

tasking to enhance the real-time performance of inference

engines. Although true production-quality multiprocessing
Ada compilers do not yet exist, it is now feasible to write

tasking implementations of inference engines which will

exhibit order-of-magnitude improvements in rule-firing rates
when ported to true multiprocessing Ada environments.

Douglass lists five levels of potential parallelism in

rule-based expert systems. They are: subrule level, rule

level, search level, language level, and system level.

These levels include different types within them. Douglass

concentrates on rule level and various types of search level

parallelism. He gives a range of quantitative results for J



Position Indicator
i

Knouled9e Base Symbols

\ ',,,@

5 ste 0 tions I
Assign Title

Number Gates

Transfer File to Vax

Load

IScrc_en Duml_
Attach Ada Functions

Test

Refresh

Knowledge Editor Graphics System
HA]ITATIOH MODULE

L -R _L-R 5 S-R •

1 [____ ._at_s lO O-R

C.Irbon dioxide level Itl C,H_ "

_ S-A _ cart_ m o_ide

9 S-O G-R
c._.mv, ,,,..

4 Generate oxygen

Oxygen 6enerati on f= Iute

Copyin9 MERCURY:>e9ads>dev>data>habitation.data.3 to URX-ADR: MAIN; HABITRTIOH.DRTA.HEWEST (text)

Passuord for Io99in9 in to FRCC as egads (or Escape to chan9e user id): _ [New user id]
Enter user name for host FACC: dlavallee

Passuord for Io99in9 in to FACC as d|avallee (or Escape to chan9e user id):

Copied MERCURY:>e9ads>dev>data>habitation.data.3 to U:USERO_SS:[DLAURLLEE.FAIE]HRBITRTIOH.DATR;1 (text)

|
Message Pane

Figure 5. Sample KEGS Screen



Page 12

these levels using mathematical models and concludes that

combinations of subrule, rule and search level parallelism

will yield better results than any single level when the

characteristics of the specific system are taken into

consideration. He also mentions that very little work has

been implemented and tested on parallel computers.

Communication between processes is an important factor in

the efficiency of parallel algorithms. Generally speaking,

the more frequently that information is exchanged, the

slower the computation is performed since processes spend a

larger portion of their time communicating rather than

computing. Researchers working on the DADO machine have

developed some unique methods of communicating between

parallel processors (e.g. a binary tree structure of

processors with communication rules controlled by
hierarchy).

In Ada, the task is the natural construct for parallel

processing. However, multitasking involves considerable

overhead in creating/activating tasks, communicating between

them, and terminating them. This overhead must be compared

with the amount of computation performed in parallel in

order to determine the relative efficiency gained by various

strategies of parallel processing. Gehani concurs, and goes

on to say that in designing concurrent programs in Ada, one

must avoid the polling bias in the communication mechanism.

He also points out that multiprocessing programs will be

more efficient if the underlying hardware offers genuine

concurrency.

Deering also emphasizes that hardware considerations,

especially processor speeds versus memory speeds, must be

examined when designing the architecture of expert systems.

He says one should "study hardware technology to determine

at what grain sizes parallelism is feasible and then figure

out how to make [the] compilers decompose programs into the

appropriate-size pieces."

Granularity is the average amount of work done by a process

between communication with other processes. It is inversely
proportional to the frequency of communication. The five

levels of parallelism mentioned by Douglass range from very

finely grained to roughly grained. A fine grained approach

was taken by Rude where each rule was itself declared as an

Ada task with rendezvous for links to predecessors and

successors. This concept has merit but is questionable for

real-time applications. In the implementation of the PICON

expert system for real-time process control, a roughly

grained algorithm was chosen by segmenting parts of the

knowledge base and applying priorities to searching the

different portions. Our future investigations will include

analyzing various strategies, including forward and backward

chaining on individual rules in parallel, dividing the

knowledge base, and combinations of the different



Page 13

strategies.

For the knowledge editor we expect to investigate modes of
enhancing the overall debugging interface, including the
development of tools for automated testing which allow the
expert to explore the more critical logic paths of the
system, particularly those logic paths which might lead to
actions or recommendations which affect overall spacecraft
safety.

A significant problem which we have encountered in the KEGS
implementation is the binding of Ada procedures and
functions to leaves and goals. Since Ada does not provide
the capability to dynamically define new procedures or
functions and pass them as procedure parameters we have been
forced to limit the expert to the use of a previously
defined library of procedures and functions (e.g. test to
see if a variable is in range, send a command string). A
more flexible approach would give the expert access to the
Ada program library in order to implement procedures and
functions when necessary. We are currently investigating
the alternatives and implications for implementing these
bindings.

Conclusions

The prototype demonstrates the feasibility of using Ada for

expert systems and the implementation of an expert-friendly

interface which supports knowledge entry. In the FLAC

system Lisp and Ada are used in ways which complement their

respective capabilities. Future investigation will

concentrate on the enhancement of the expert knowledge

entry/debugging interface and on the issues associated with

multitasking and real-time expert systems implementation in

Ada.

BIBLIOGRAPHY

David C. Brauer, Patrick P. Roach, Michael S. Frank, and

Richard P. Knackstedt, "Ada and Knowledge-Based Systems: A

Prototype Combining the Best of Both Worlds", Expert Systems

in Government Conference, McLean, VA, October 1986

NASA Advanced Technical Advisory Committee, Advancing

Automation and Robotics Technology for the NASA Space

Station and for the U.S. Economy, NASA Technical Memorandum

87566/_ Volume II, March 1985 p. 5.

Deering, M. "Architectures for AI", Byte Magazine, April,

1985.

Douglass, R., "Characterizing the Parallelism in Rule-Based

Expert Systems", Proc. Hawaii International Conference on

Systems Science, HICSS-18, Jan. 1985.



Page 14

Douglass, R., "A Qualitative Assessment of Parallelism
Expert Systems", IEEE Software, May 1985, pp. 70-81.

in

Gehani, N., Ada:
Inc., 1984.

Concurrent Programming, Prentice-Hall

David B. Lavallee, "An Ada Inference Engine for Expert
Systems", Proceedings of the First International Conference

on Ada Programming Language Applications for the NASA Space

Station, Houston, TX, June 1986.

Moore, R., L. Hawkinson, C. Knickerbocker, L. Churchman,

"A Real-Time Expert System for Process Control", First

Conference on AI Applications, IEEE Computer Society Press,
Dec. 1984.

Moore, R., "Adding Real-Time Expert System Capabilities to

Large Distributed Control Systems", Control Engineering,

April 1985.

Rude, A., "Translating a Research LISP Prototype to a Formal

Ada Design Prototype", Proceedings of the Washington Ada

Symposium, March 1985.

Stolfo, S., and D. Miranker, "DADO: A Parallel Processor

for Expert Systems", Proceedings of the 1984 International

Conference on Parallel Processing, IEEE Computer Society
Press, August, 1984.

Stolfo, S., "Five Parallel Algorithms for Production System

Execution on the DADO Machine", Proceedings of the NCAI,
Austin, TX, 1984.

k_.4


